6,474 research outputs found

    Pseudo-static pile load test: expirience on pre-bored and large diameter piles

    Get PDF
    Pseudostatic load test is usually employed as an alternative to the conventional static load test for piles. Recent developments showed that the well developed Statnamic tests can be substantially simplified by using a hanging weight falling over a cushion system that allows increasing the time length of the generated stress pulse. This work describes the design of the test method and a recently experience related to the application of the pseudostatic load test used to evaluate the bearing capacity of large diameter piles. The performed test showed that using moderate loads from 10 to 20 tons falling from 10 cm to 120 cm and cushions prepared at varied stiffness allowed to reach more than 800 tons of loading and the fully mobilization of the pile ultimate capacity. The main advantages of the proposed pseudostatic tests respect to the conventional Statnamic tests is the possibility to apply load increments by steps, the repeatability of each loading step and the simpler test setup required by the former.Fil: Rinaldi, V. A. Universidad Nacional de Córdoba; Argentina.Fil: Viguera, R. CIM SRL consultants; Argentina.Ingeniería de la Construcció

    Thinking beyond organism energy use: A trait-based bioenergetic mechanistic approach for predictions of life history traits in marine organisms

    Get PDF
    The functional trait-based bioenergetic approach is emergent in many ecological spectra, from the conservation of natural resources to mitigation and adaptation strategies in a global climate change context. Such an approach relies on being able to exploit mechanistic rules to connect environmental human-induced variability to functional traits (i.e. all those specific traits defining species in terms of their ecological roles) and use these to provide estimates of species life history traits (LH; e.g. body size, fecundity per life span, number of reproductive events). LHs are species-specific and proximate determinants of population characteristics in a certain habitat. They represent the most valuable quantitative information to investigate how broad potential distributional boundaries of a species are, and to feed predictive population models. There is much to be found in the current literature that describes mechanistic functional trait-based bioenergetics models, using them to test ecological hypotheses, but a mathematical framework often renders interpretation and use complicated. Here, we wanted to present a simpler interpretation and description of one of the most important recent mechanistic bioenergetic theories: the dynamic energy budget theory by Kooijman (Dynamic Energy Budget Theory for Metabolic Organisation, 2010, Cambridge University Press, Cambridge). Our main aim was to disentangle those aspects that at first reading may seem too mathematically challenging to many marine biologists, ecologists and environmental scientists, and present them for use in mechanistic applications

    The Human SLC25A33 and SLC25A36 Genes of Solute Carrier Family 25 Encode Two Mitochondrial Pyrimidine Nucleotide Transporters

    Get PDF
    The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport inorganic anions, amino acids, carboxylates, nucleotides, and coenzymes across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. Here two members of this family, SLC25A33 and SLC25A36, have been thoroughly characterized biochemically. These proteins were overexpressed in bacteria and reconstituted in phospholipid vesicles. Their transport properties and kinetic parameters demonstrate that SLC25A33 transports uracil, thymine, and cytosine (deoxy)nucleoside di- and triphosphates by an antiport mechanism and SLC25A36 cytosine and uracil (deoxy)nucleoside mono-, di-, and triphosphates by uniport and antiport. Both carriers also transported guanine but not adenine (deoxy)nucleotides. Transport catalyzed by both carriers was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. In confirmation of their identity (i) SLC25A33 and SLC25A36 were found to be targeted to mitochondria and (ii) the phenotypes of Saccharomyces cerevisiae cells lacking RIM2, the gene encoding the well characterized yeast mitochondrial pyrimidine nucleotide carrier, were overcome by expressing SLC25A33 or SLC25A36 in these cells. The main physiological role of SLC25A33 and SLC25A36 is to import/export pyrimidine nucleotides into and from mitochondria, i.e. to accomplish transport steps essential for mitochondrial DNA and RNA synthesis and breakdown

    Parameterized thermal macromodeling for fast and effective design of electronic components and systems

    Get PDF
    We present a parameterized macromodeling approach to perform fast and effective dynamic thermal simulations of electronic components and systems where key design parameters vary. A decomposition of the frequency-domain data samples of the thermal impedance matrix is proposed to improve the accuracy of the model and reduce the number of the computationally costly thermal simulations needed to build the macromodel. The methodology is successfully applied to analyze the impact of layout variations on the dynamic thermal behavior of a state-of-the-art 8-finger AlGaN/GaN HEMT grown on a SiC substrate

    On Adiabatic Renormalization of Inflationary Perturbations

    Get PDF
    We discuss the impact of adiabatic renormalization on the power spectrum of scalar and tensor perturbations from inflation. We show that adiabatic regularization is ambiguous as it leads to very different results, for different adiabatic subtraction schemes, both in the range v\equiv k/(aH) \gsim 0.1 and in the infrared regime. All these schemes agree in the far ultraviolet, v1v\gg 1. Therefore, we argue that in the far infrared regime, v1v\ll 1, the adiabatic expansion is no longer valid, and the unrenormalized spectra are the physical, measurable quantities. These findings cast some doubt on the validity of the adiabatic subtraction at horizon exit, v=1v=1, to determine the perturbation spectra from inflation which has recently advocated in the literature.Comment: 7 pages, 3 figures, revtex. New version with more results and modified plot

    Eco-physiological response of two marine bivalves to acute exposition to commercial Bt-based pesticide

    Get PDF
    Microbial products based on the entomopathogenic bacterium Bacillus thuringiensis (Bt) are among the most common biopesticides used worldwide to suppress insect pests in forests, horticulture and agricultural crops. Some of the effects of commercial Bt have been recorded for terrestrial and freshwater non-target organisms but little research is available on marine fauna. Nevertheless, due to the contiguity of agro-ecosystems and coastal habitats, marine fauna may be highly influenced by this control method. We studied the effect of a commercial Bt product on the physiological and ecological responses and the energy budget of two of the most frequent marine intertidal bivalves in the Mediterranean, the native Mytilaster minimus and the invasive Brachidontes pharaonis. To test the effects experimentally, we simulated the worst scenarios possible using the average dose applied to fields and a hypothetical accumulation dose. The results showed the feeding rates of both species were affected detrimentally by the different experimental conditions; higher concentrations led to higher respiration rates, however neither species showed any significant difference in excretion rates. The biopesticide had a significant effect on the energy budget, the values decreasing with doses. In addition, it led to high mortality for the worst treatments and, in both species, induced significantly higher cardiac activity than in the controls. These results indicate a measurable effect of Bt commercial products on marine organisms, and great attention should be paid to biopesticides composed by entomopathogenic bacteria and addictive compounds. In addition, the results highlight the urgent need to study not only the effects of anthropogenic pressures on target organisms but also to extend our view to other ecosystems not expected to be influenced. Gaining data at the organismal level should help increase the sustainability of pest control and reduce the consequences of side-effects

    A multi-objective DIRECT algorithm for ship hull optimization

    Get PDF
    The paper is concerned with black-box nonlinear constrained multi-objective optimization problems. Our interest is the definition of a multi-objective deterministic partition-based algorithm. The main target of the proposed algorithm is the solution of a real ship hull optimization problem. To this purpose and in pursuit of an efficient method, we develop an hybrid algorithm by coupling a multi-objective DIRECT-type algorithm with an efficient derivative-free local algorithm. The results obtained on a set of “hard” nonlinear constrained multi-objective test problems show viability of the proposed approach. Results on a hull-form optimization of a high-speed catamaran (sailing in head waves in the North Pacific Ocean) are also presented. In order to consider a real ocean environment, stochastic sea state and speed are taken into account. The problem is formulated as a multi-objective optimization aimed at (i) the reduction of the expected value of the mean total resistance in irregular head waves, at variable speed and (ii) the increase of the ship operability, with respect to a set of motion-related constraints. We show that the hybrid method performs well also on this industrial problem

    Predicting biological invasions in marine habitats through eco-physiological mechanistic models: a case study with the bivalve Brachidontes pharaonis

    Get PDF
    Aim We used a coupled biophysical ecology (BE)-physiological mechanistic modelling approach based on the Dynamic Energy Budget theory (DEB, Dynamic energy budget theory for metabolic organisation, 2010, Cambridge University Press, Cambridge; DEB) to generate spatially explicit predictions of physiological performance (maximal size and reproductive output) for the invasive mussel, Brachidontes pharaonis. Location We examined 26 sites throughout the central Mediterranean Sea. Methods We ran models under subtidal and intertidal conditions; hourly weather and water temperature data were obtained from the Italian Buoy Network, and monthly CHL-a data were obtained from satellite imagery. Results Mechanistic analysis of the B. pharaonis fundamental niche shows that subtidal sites in the Central Mediterranean are generally suitable for this invasive bivalve but that intertidal habitats appear to serve as genetic sinks. Main conclusions A BE-DEB approach enabled an assessment of how the physical environment affects the potential distribution of B. pharaonis. Combined with models of larval dispersal, this approach can provide estimates of the likelihood that an invasive species will become established
    corecore